Relevance of the Exocyst in Arabidopsis exo70e2 Mutant for Cellular Homeostasis under Stress

Author:

Neves JoãoORCID,Monteiro João,Sousa BrunoORCID,Soares CristianoORCID,Pereira SusanaORCID,Fidalgo FernandaORCID,Pissarra JoséORCID,Pereira CláudiaORCID

Abstract

Plants must adapt to cope with adverse environmental conditions that affect their growth and development. To overcome these constraints, they can alter their developmental patterns by modulating cellular processes and activating stress-responsive signals. Alongside the activation of the antioxidant (AOX) system, a high number of genes are expressed, and proteins must be distributed to the correct locations within the cell. The endomembrane system and associated vesicles thus play an important role. Several pathways have been associated with adverse environmental conditions, which is the case for the exocyst-positive organelle—EXPO. The present work, using Arabidopsis mutants with T-DNA insertions in the gene EXO70, essential for EXPO vesicles formation, was designed to characterise the anatomical (morphology and root length), biochemical (quantification of stress markers and antioxidant system components), and molecular responses (gene expression) to abiotic stresses (saline, drought, oxidative, and metal-induced toxicity). The results obtained showed that mutant plants behave differently from the wild type (WT) plants. Therefore, in the exo70 mutant, morphological changes were more noticeable in plants under stress, and the non-enzymatic component of the antioxidant system was activated, with no alterations to the enzymatic component. Furthermore, other defence strategies, such as autophagy, did not show important changes. These results confirmed the EXPO as an important structure for tolerance/adaptation to stress.

Funder

Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3