Abstract
Organic semiconductors are the focus of numerous studies; they are used in electronic devices. Modern research involves the production of neuromorphic organic materials, including those based on liquid crystal materials. The purpose of this work involves the theoretical modeling of molecules (the “core with branches” type) to construct a discotic mesophase capable of performing the functions of a neuromorphic material. For this purpose, the conductivity of crystal porphine, which can act as the nucleus of a molecule of the “core with branches” type, was investigated. The Marcus theory charge mobility values for the hole and electron were 0.148 and 0.088 cm2/V·s, respectively (the MOO method for calculating transfer integrals), and 0.561 and 0.160 cm2/V·s (DIPRO method). Based on TD-HF (HF-3c level of theory) calculations, possible structures of molecules for the formation of a discotic mesophase are proposed.
Funder
Strategic Academic Leadership Program of the State University of Nizhny Novgorod, “Priority 2030”
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献