Evolutionary 2D organic crystals for optoelectronic transistors and neuromorphic computing

Author:

Qian Fangsheng,Bu Xiaobo,Wang Junjie,Lv Ziyu,Han Su-Ting,Zhou YeORCID

Abstract

Abstract Brain-inspired neuromorphic computing has been extensively researched, taking advantage of increased computer power, the acquisition of massive data, and algorithm optimization. Neuromorphic computing requires mimicking synaptic plasticity and enables near-in-sensor computing. In synaptic transistors, how to elaborate and examine the link between microstructure and characteristics is a major difficulty. Due to the absence of interlayer shielding effects, defect-free interfaces, and wide spectrum responses, reducing the thickness of organic crystals to the 2D limit has a lot of application possibilities in this computing paradigm. This paper presents an update on the progress of 2D organic crystal-based transistors for data storage and neuromorphic computing. The promises and synthesis methodologies of 2D organic crystals (2D OCs) are summarized. Following that, applications of 2D OCs for ferroelectric non-volatile memory, circuit-type optoelectronic synapses, and neuromorphic computing are addressed. Finally, new insights and challenges for the field’s future prospects are presented, pushing the boundaries of neuromorphic computing even farther.

Funder

Guangdong Provincial Department of Science and Technology

Science and Technology Innovation Commission of Shenzhen

Publisher

IOP Publishing

Subject

General Medicine

Reference155 articles.

1. Neuromorphic nanoelectronic materials;Sangwan;Nat. Nanotechnol.,2020

2. The future of electronics based on memristive systems;Zidan;Nat. Electron.,2018

3. Synaptic computation;Abbott;Nature,2004

4. In-memory computing to break the memory wall;Huang;Chin. Phys. B,2020

5. Redox transistors for neuromorphic computing;Fuller;IBM J. Res. Dev.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3