Abstract
Conventional experimental modal analysis uses excitation and response information to estimate the frequency response function. However, many engineering structures face excitation signals that are difficult to measure, so output-only modal estimation is an important issue. In this paper, singular spectrum analysis is employed to construct a Hankel matrix of appropriate dimensions based on the measured response data, and the observability of the system state space model is used to treat the Hankel matrix as three components containing system characteristics, excitation and noise. Singular value decomposition is used to factorize the data matrix and use the characteristics of the left and right singular matrices to reduce the dimension of the data matrix to improve calculation efficiency. Furthermore, the singular spectrum is employed to estimate the minimum order to reconstruct the Hankel matrix; then, the excitation and noise components can be removed, and the system observability matrix can be obtained. By appropriately a factorizing system observability matrix, we obtain the system matrix to estimate the modal parameters. In addition, the fictitious modes produced by increasing the order of the matrix can be eliminated through the stabilization diagram.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献