Empirical NOx Removal Analysis of Photocatalytic Construction Materials at Real-Scale

Author:

Kim Miyeon,Kim Hyunggeun,Park Jinchul

Abstract

The NOx removal performance of photocatalytic construction materials is demonstrated using two experiments under indoor and outdoor environments: (1) A photoreactor test was conducted to assess the NO removal performance of construction materials (e.g., coatings, paints and shotcrete) using a modified ISO 22197-1 method; (2) A water washing test was conducted using two specimens enlarged to the size of actual building materials and artificially exposed to NOx in a laboratory to analyze NOx removal performance. For (1), the UV irradiation of the outdoor environment was analyzed and the experiment was conducted in an indoor laboratory under UV irradiation identical to that of the outdoor condition. Photoreactor tests were conducted on construction materials applied to actual buildings located in Seoul, South Korea. In (2), the enlarged specimen was used for a field experiment by applying a modified method from the ISO 22197-1 standard. On sunny days, the NOx removal performance (3.12–4.76 μmol/150 cm2·5 h) was twice as much as that of the ISO 22197-1 standard specification (2.03 μmol/150 cm2·5 h) in the real-world. The washing water test results indicated that general aqueous paint achieved a NOx removal of 3.88 μmol, whereas photocatalytic paint was superior to 14.13 μmol.

Funder

Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and Korea Agency for Infrastructure Technology Advancement (KAIA).

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3