A Study on the Evaluation Methods of Nitrogen Oxide Removal Performance of Photocatalytic Concrete for Outdoor Applications

Author:

Park Hee-Ju,Hossain Sayed MukitORCID,Choi Kiin,Shon Ho-KyongORCID,Kim Jong-Ho

Abstract

In Korea, the issue of particulate matter pollution is growing, and many solutions are being developed to deal with it. Photocatalytic technology has been found to be helpful in removing precursors such as nitrogen oxides that cause particulate matter. In a microcosm setup, ISO 22197-1 has been successfully used to quantify the removal of nitrogen oxides from the specimen to which the photocatalyst is applied. However, owing to a lack of suitable tools, on-site measurement of real-scale efficacy is difficult. Depending on the substrate and surrounding circumstances at the application location, the photocatalyst may function at varying levels. Additionally, the expected photocatalytic effect may differ depending on the ambient air quality and sunlight irradiation intensity. This article describes two approaches for studying outdoor concrete photocatalysis. Standard gas measurement and dual-reactor measurement are the recommended evaluation approaches. The standard gas measurement method was found useful for assessing the applied photocatalyst itself as an outcome of field assessment. The performance of photocatalysts at different sites was found to be mutually exclusive and comparable. Over 180 min, on a building roof deck, the NO removal by the standard gas method was 0.68 ppm, whereas, at two shaded locations, the removal amount was 0.51 ppm (side wall) and 0.24 ppm (underpass) for 300 min. The dual reactor measurement approach, on the other hand, was discovered to be one of the most suitable methods for assessing how much of an improvement there has been in the air quality in areas where photocatalysts have been placed.

Funder

Smart Civil Infrastructure Research Program funded by Ministry of Land, Infrastructure, and Transport of the Korean government

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3