Prediction of the Interface Shear Strength between Ultra-High-Performance Concrete and Normal Concrete Using Artificial Neural Networks

Author:

Du Changqing,Liu Xiaofan,Liu Yinying,Tong Teng

Abstract

The bond strength between ultra-high-performance concrete (UHPC) and normal-strength concrete (NC) plays an important role in governing the composite specimens’ overall behaviors. Unfortunately, there are still no widely accepted formulas targeting UHPC–NC interfacial strength, either in their specifications or in research papers. To this end, this study constructs an experimental database, consisting of 563 and 338 specimens for splitting and slant shear tests, respectively. Moreover, an additional 35 specimens for “improved” slant shear tests were performed, which could circumvent concrete crushing and trigger interfacial debonding. Additionally, for the first time in our tests, the effect of casting sequence on UHPC–NC bond strength was identified. Based on the database, an artificial neural network (ANN) model is proposed with the following inputs: namely, the normal stress perpendicular to the interface, the interface roughness, and the compressive strengths of the UHPC and NC materials. Based on the ANN analyses, the explicit expression of UHPC–NC bond strength is proposed, which significantly lowers the prediction error. To be fully compatible with the specifications, the conventional shear-friction formula is modified. By splitting the total force into adhesion and friction forces, the modified formula additionally takes the casting sequence into account. Although sacrificing accuracy to some extent compared to the ANN model, the modified formula relies on a solid physical basis and its accuracy is enhanced significantly compared to the existing formulas in specifications or research papers.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3