Bond strength prediction of UHPC-NSC interface

Author:

Momani Yazan,Alawadi Roaa,Taqieddin Ziad,Tarawneh Ahmad,Rezeq Wael,Aljuneidi Anas

Abstract

The application of ultra-high-performance concrete (UHPC) on top of normal-strength concrete (NSC) is a practical rehabilitation approach to maintaining degraded and damaged concrete members. However, a successful repair operation and consequent adequate performance are very much dependent on the ability of the interface between UHPC and NSC to present a superior performance of bonding under various surface conditions. Consequently, predicting the strength of the bond at the interface joining the existing NSC and the newly placed overlaying UHPC - with sufficient certainty - has become a vital and required step in assessing and maintaining UHPC rehabilitated NSC structural elements. In this work, Artificial Neural Network (ANN as well as Gene Expression Programming (GEP methods are utilized to predict the bond strength between the overlaying UHPC and the substrate NSC using a comprehensive database set consisting of 264 experimental data points gathered from the literature. A parametric ANN analysis is performed to examine and assess the effect of each parameter on the interfacial bond strength. The following five factors are identified as key parameters through the GEP and ANN analyses: curing method, age of UHPC, the compressive strength of NSC, interfacial surface treatment, and moisture conditions. The developed ANN and GEP models have good accuracy and closer predictions of the bond strength of the slant shear test and the splitting tensile strength with root mean square error (RMSE) values of 5.0, 4.3, and coefficient of variation (COV) values of 37%, 24%, respectively.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3