Abstract
Low-temperature co-fired ceramics (LTCCs) have been attracting attention due to rapid advances in wireless telecommunications. Low-dielectric-constant (Dk) and low-dissipation-factor (Df) LTCCs enable a low propagation delay and high signal quality. However, the wide ranges of glass, ceramic filler compositions, and processing features in fabricating LTCC make property modulating difficult via experimental trial-and-error approaches. In this study, we explored Dk and Df values of LTCCs using a machine learning method with a Gaussian kernel ridge regression model. A principal component analysis and k-means methods were initially performed to visually analyze data clustering and to reduce the dimension complexity. Model assessments, by using a five-fold cross-validation, residual analysis, and randomized test, suggest that the proposed Dk and Df models had some predictive ability, that the model selection was appropriate, and that the fittings were not just numerical due to a rather small data set. A cross-plot analysis and property contour plot were performed for the purpose of exploring potential LTCCs for real applications with Dk and Df values less than 10 and 2 × 10−3, respectively, at an operating frequency of 1 GHz. The proposed machine learning models can potentially be utilized to accelerate the design of technology-related LTCC systems.
Funder
Ministry of Science and Technology, Taiwan
Industrial Technology Research Institute
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献