An Efficient Authenticated Key Agreement Scheme Supporting Privacy-Preservation for Internet of Drones Communications

Author:

Li Chun-TaORCID,Weng Chi-Yao,Chen Chin-LingORCID,Lee Cheng-ChiORCID,Deng Yong-Yuan,Imoize Agbotiname LuckyORCID

Abstract

In recent years, due to the rapid development of Internet of things (IoTs), various physical things (objects) in IoTs are smart enough to make their own decisions without the involvement of humans. The smart devices embedded in a drone can sense, collect, and transmit real-time data back to the controller from a designated environment via wireless communication technologies. The mobility, flexibility, reliability and energy efficiency of drones makes them more widely used in IoT environments such as commercial, military, entertainment applications, traffic surveillance and aerial photography. In a generalized IoD architecture, we have communications among the drones in a flying zone, among the drones and the control server, and also among the drones and authorized user. IoD still has many critical issues that need to be addressed, such as data access being carried out through a public channel and battery operated drones. To address these concerns in IoD communications, in this paper, an efficient authentication and secure communication scheme with privacy preservation is proposed and it only uses secure one-way hash function and bitwise XOR operations when control server, drone and user mutually authenticate each other. After the successful authentication, both IoD-based participants can agree on a common session key to secure the subsequent communication messages. The widely accepted ProVerif and BAN logic analysis have been used to assure that the proposed scheme is provably secure against existing well-known security attacks and ensures privacy. Finally, a comparative analysis is presented to demonstrate the proposed scheme preserves efficiency when compared to existing competitive schemes.

Funder

National Science and Technology Council, Taiwan, R.O.C.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PDAC-SL: A PUF-enabled drone access control technique for smart logistics;Alexandria Engineering Journal;2024-11

2. Designing Secure Big Data Analytics Mechanism Using Authentication for Drones-Assisted Military Applications;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS);2024-05-20

3. DAC‐MD: A privacy preserving drone‐access control scheme for last mile delivery;Transactions on Emerging Telecommunications Technologies;2024-03

4. Artificial Intelligence in Spectrum Management: Policy and Regulatory Considerations;2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS);2023-11-01

5. Evasion and Poison attacks on Logistic Regression-based Machine Learning Classification Model;2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3