Design and Implementation of an ML and IoT Based Adaptive Traffic-Management System for Smart Cities

Author:

Lilhore Umesh KumarORCID,Imoize Agbotiname LuckyORCID,Li Chun-TaORCID,Simaiya Sarita,Pani Subhendu KumarORCID,Goyal Nitin,Kumar ArunORCID,Lee Cheng-ChiORCID

Abstract

The rapid growth in the number of vehicles has led to traffic congestion, pollution, and delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving the universe towards automated processes and intelligent management systems. This is a critical contribution to automation and smart civilizations. Effective and reliable congestion management and traffic control help save many precious resources. An IoT-based ITM system set of sensors is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data. Machine learning (ML) is another technique to improve the transport system. The existing transport-management solutions encounter several challenges resulting in traffic congestion, delay, and a high fatality rate. This research work presents the design and implementation of an Adaptive Traffic-management system (ATM) based on ML and IoT. The design of the proposed system is based on three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to cover all the possible issues of the transport system. The proposed ATM system also utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed ATM model constantly updates traffic signal schedules depending on traffic volume and estimated movements from nearby crossings. It significantly lowers traveling time by gradually moving automobiles across green signals and decreases traffic congestion by generating a better transition. The experiment outcomes reveal that the proposed ATM system significantly outperformed the conventional traffic-management strategy and will be a frontrunner for transportation planning in smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times and congestion, reduces road accidents, and improves the overall journey experience.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3