Real-Time AI-Assisted Push-Broom Hyperspectral System for Precision Agriculture

Author:

Neri Igor1ORCID,Caponi Silvia2ORCID,Bonacci Francesco1ORCID,Clementi Giacomo1ORCID,Cottone Francesco1ORCID,Gammaitoni Luca1ORCID,Figorilli Simone3ORCID,Ortenzi Luciano34ORCID,Aisa Simone2,Pallottino Federico3ORCID,Mattarelli Maurizio1ORCID

Affiliation:

1. Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy

2. Materials Foundry (IOM-CNR), National Research Council, c/o Department of Physics and Geology, Via A. Pascoli, 06123 Perugia, Italy

3. Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, Monterotondo, 00015 Rome, Italy

4. Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo De Lellis, Via Angelo Maria Ricci, 35a-02100 Rieti, 01100 Viterbo, Italy

Abstract

In the ever-evolving landscape of modern agriculture, the integration of advanced technologies has become indispensable for optimizing crop management and ensuring sustainable food production. This paper presents the development and implementation of a real-time AI-assisted push-broom hyperspectral system for plant identification. The push-broom hyperspectral technique, coupled with artificial intelligence, offers unprecedented detail and accuracy in crop monitoring. This paper details the design and construction of the spectrometer, including optical assembly and system integration. The real-time acquisition and classification system, utilizing an embedded computing solution, is also described. The calibration and resolution analysis demonstrates the accuracy of the system in capturing spectral data. As a test, the system was applied to the classification of plant leaves. The AI algorithm based on neural networks allows for the continuous analysis of hyperspectral data relative up to 720 ground positions at 50 fps.

Funder

European Union, NextGenerationEU, under the Italian Ministry of University and Research (MUR) National Innovation Ecosystem

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3