A Region-Monitoring-Type Slitless Imaging Spectrometer

Author:

Ouyang Rui12ORCID,Wang Duo3,Jin Longxu12,Fu Tianjiao12,Zhao Zhenzhang12,Zhang Xingxiang12

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

In modern scientific practice, it is necessary to consistently observe predetermined zones, with the expectation of detecting and identifying emerging targets or events inside such areas. This research presents an innovative imaging spectrometer system for the continuous monitoring of specific areas. This study begins by providing detailed information on the features and optical structure of the constructed instrument. This is then followed by simulations using optical design tools. The device has an F-number of 5, a focal length of 100 mm, a field of view of 3 × 7, and a wavelength range spanning from 400 nm to 600 nm. The optical path diagram demonstrates that the system’s dispersion and imaging pictures can be distinguished, hence fulfilling the system’s specifications. Furthermore, the utilization of a Modulation Transfer Function (MTF) graph has substantiated that the image quality indeed satisfies the specified criteria. To evaluate the instrument’s performance in the spectrum observation of fixed regions, a region-monitoring-type slitless imaging spectrometer was built. The equipment has the capability to identify a specific region and rapidly capture the spectra of objects or events that are present inside that region. The spectral data were collected effectively by the implementation of image processing techniques on the captured photos. The correlation coefficient between these data and the reference data was 0.9226, showing that the device successfully measured the target’s spectrum. Therefore, the instrument that was created successfully demonstrated its ability to capture images of the observed areas and collect spectral data from the targets located within those regions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3