Video-Based Human Activity Recognition Using Deep Learning Approaches

Author:

Surek Guilherme Augusto Silva1ORCID,Seman Laio Oriel2ORCID,Stefenon Stefano Frizzo34ORCID,Mariani Viviana Cocco56ORCID,Coelho Leandro dos Santos15ORCID

Affiliation:

1. Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Curitiba 80215-901, Brazil

2. Graduate Program in Applied Computer Science, University of Vale do Itajai, Itajai 88302-901, Brazil

3. Digital Industry Center, Fondazione Bruno Kessler, 38123 Trento, Italy

4. Department of Mathematics, Computer Science and Physics, University of Udine, 33100 Udine, Italy

5. Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba 81530-000, Brazil

6. Mechanical Engineering Graduate Program (PPGEM), Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil

Abstract

Due to its capacity to gather vast, high-level data about human activity from wearable or stationary sensors, human activity recognition substantially impacts people’s day-to-day lives. Multiple people and things may be seen acting in the video, dispersed throughout the frame in various places. Because of this, modeling the interactions between many entities in spatial dimensions is necessary for visual reasoning in the action recognition task. The main aim of this paper is to evaluate and map the current scenario of human actions in red, green, and blue videos, based on deep learning models. A residual network (ResNet) and a vision transformer architecture (ViT) with a semi-supervised learning approach are evaluated. The DINO (self-DIstillation with NO labels) is used to enhance the potential of the ResNet and ViT. The evaluated benchmark is the human motion database (HMDB51), which tries to better capture the richness and complexity of human actions. The obtained results for video classification with the proposed ViT are promising based on performance metrics and results from the recent literature. The results obtained using a bi-dimensional ViT with long short-term memory demonstrated great performance in human action recognition when applied to the HMDB51 dataset. The mentioned architecture presented 96.7 ± 0.35% and 41.0 ± 0.27% in terms of accuracy (mean ± standard deviation values) in the train and test phases of the HMDB51 dataset, respectively.

Funder

National Council for Scientific and Technological Development—CNPq

Fundação Araucária PRONEX

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3