Abstract
In recent years, privacy leakage events in large-scale social networks have become increasingly frequent. Traditional methods relying on operators have been unable to effectively curb this problem. Researchers must turn their attention to the privacy protection of users themselves. Privacy metrics are undoubtedly the most effective method. However, social networks have a substantial number of users and a complex network structure and feature set. Previous studies either considered a single aspect or measured multiple aspects separately and then artificially integrated them. The measurement procedures are complex and cannot effectively be integrated. To solve the above problems, we first propose using a deep neural network to measure the privacy status of social network users. Through a graph convolution network, we can easily and efficiently combine the user features and graph structure, determine the hidden relationships between these features, and obtain more accurate privacy scores. Given the restriction of the deep learning framework, which requires a large number of labelled samples, we incorporate a few-shot learning method, which greatly reduces the dependence on labelled data and human intervention. Our method is applicable to online social networks, such as Sina Weibo, Twitter, and Facebook, that can extract profile information, graph structure information of users’ friends, and behavioural characteristics. The experiments show that our model can quickly and accurately obtain privacy scores in a whole network and eliminate traditional tedious numerical calculations and human intervention.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献