Application of SLIPI-Based Techniques for Droplet Size, Concentration, and Liquid Volume Fraction Mapping in Sprays

Author:

Mishra Yogeshwar NathORCID,Tscharntke Timo,Kristensson Elias,Berrocal EdouardORCID

Abstract

Structured laser illumination planar imaging (SLIPI)-based techniques have been employed during the past decade for addressing multiple light scattering issues in spray imaging. In this article, SLIPI droplet sizing based on the intensity ratio of laser-induced fluorescence (LIF) over Mie scattering (SLIPI-LIF/Mie) and SLIPI-Scan for extinction-coefficient (µe) mapping are applied simultaneously. In addition, phase Doppler anemometry (PDA) and numerical calculations based on the Lorenz–Mie theory are also employed in order to extract the droplets Sauter mean diameter (SMD), the droplets number density (N), and the liquid volume fraction (LVF) in a steady asymmetric hollow cone water spray. The SLIPI-LIF/Mie ratio is converted to droplets SMD by means of a calibration procedure based on PDA measurements. The droplet SMD for the investigated spray varies from 20 µm to 60 µm, the N values range from 5 to 60 droplets per mm3, and the LVF varies between 0.05 × 10−4 and 5.5 × 10−4 within the probed region of the spray. To generate a series of two-dimensional images at different planes, the spray scanning procedure is operated in a “bread slicing” manner by moving the spray perpendicularly to the light sheet axis. From the resulting series of images, the procedure described here shows the possibility of obtaining three-dimensional reconstructions of each scalar quantity, allowing a more complete characterization of droplet clouds forming the spray region.

Funder

European Research Council

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. AN ASSESSMENT OF SPRAY TECHNOLOGY—EDITORIAL

2. Handbook of Atomization and Sprays: Theory and Applications;Ashgriz,2011

3. Atomization and Sprays;Lefebvre,2017

4. Spray Applications in Internal Combustion Engines;Lee,2011

5. Spray measurement technology: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3