2D Diesel Spray Droplet Size Mapping Based on Planar Laser Induced Fluorescence and Mie-Scattering Technique Using Sparsity Deconvolution

Author:

Cheng Qiang1,Grahn Viljam2,Akram Muhammad1,Hyvonen Jari2,Kaario Ossi1,Larmi Martti1

Affiliation:

1. Aalto University

2. Wartsila Finland Oy

Abstract

<div class="section abstract"><div class="htmlview paragraph">The distribution of spray droplet sizes plays a pivotal role in internal combustion engines, directly affecting fuel-air mixing, evaporation, and combustion. To gain a precise understanding of droplet size distribution in a two-dimensional space, non-intrusive optical diagnostics emerge as a highly effective method. In the current investigation, two-dimensional (2D) diesel spray droplet sizes mapping using a simultaneous combination of planar laser-induced fluorescence (PLIF) and Mie-scattering techniques is introduced. The assessment of droplet diameter relies on the interplay between fluorescent and scattered light intensities which correspond the light based on volumetric droplets and surface area of the droplets. This calculation is made possible through the LIF/Mie technique. However, traditional LIF/Mie methods are plagued by inaccuracies arising from multiple light scattering. To overcome this challenge and to attain higher accuracy than conventional LIF/Mie technique, we introduce a sparsity deconvolution approach to eliminate unwanted light interference on both LIF and Mie images. The core concept of sparsity deconvolution is to reduce disturbances caused by multiple scattering and offer sharp and finely detailed images for LIF/Mie ratio estimation. To enhance spatial sharpness and remove the undesired scattering light, an iterative Richardson–Lucy (RL) and Land Weber (LW) filters are introduced for image deconvolution. The results reveal that RL deconvolution is particularly well-suited for the intricate task of deconvolving complex liquid sprays, producing sharper and finer detailed droplet images. Additionally, the further calibration of 2D droplet size mapping based on microscopic method is implemented to approximate the linear fitting curve of dependence between macro LIF/Mie ratio and droplet diameter. This comprehensive approach advances the understanding of the critical role played by droplet size distribution under engine-like conditions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3