Simulation and Experimental Analysis on the Load Characteristics of a Temperature-Control Curtain in a Thermally-Stratified Reservoir

Author:

Lian Jijian,Liu Chunxi,Wang Haijun,Liu FangORCID,Lu Wenhe,Zhao Yue

Abstract

Low-temperature discharged water from thermally-stratified reservoirs in spring and summer will have a negative environmental impact on fish breeding and agricultural irrigation downstream. The temperature-control curtain (TCC) is a selective withdrawal structure that can effectively change the discharged water temperature. Compared with a traditional selective withdrawal project, a TCC project has the advantages of low cost and simple construction and can even be added to operating reservoirs without impacting power generation. Analysis of the load characteristics is the key to the application of TCC engineering. This paper establishes a three-dimensional numerical model simulation and verifies it with physical model experimental results. The crucial parameters affecting the load characteristics of TCC are investigated, including the water blocking rate, area ratio, inclination ratio, inflow velocity, and water temperature stratification ratio. The results show that: (1) This numerical simulation approach can be used to predict the drag coefficient and the load of a TCC; (2) the water blocking rate has the greatest influence on the drag coefficient, and it is the most critical indicator of the TCC load; and (3) the drag coefficient exponentially increases with an increasing water blocking rate, quadratically increases with an increasing area ratio, linearly increases with an increasing inclination ratio, and linearly increases with an increasing water temperature stratification ratio.

Funder

Fund for National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3