Experimental Analysis of Temperature-Control Curtain Regulating Outflow Temperature in a Thermal-Stratified Reservoir

Author:

Liu Chunxi,Lian Jijian,Wang Haijun

Abstract

The construction of reservoir dams has changed the environment and natural properties of the river course, and deep-water reservoirs present an obvious phenomenon of thermal stratification. Low-temperature outflow water in spring and summer will have a negative impact on the downstream ecological environment. Therefore, it is necessary to take selective withdrawal measures to regulate low-temperature outflow water. The temperature-control curtain project has the advantages of low cost, convenient construction and wide application. Based on the topographic data, a laboratory test model for regulating outflow temperature by a temperature-control curtain is established. A high-power electric heating system is adopted to form a nonlinear thermal stratification. The accuracy of the test data is verified by the prototype observed water temperature. The main parameters affecting the outflow temperature are investigated, including thermal stratification, flow height above the temperature-control curtain, water level, and discharge flow. The results show the following: firstly, the outflow temperature mainly depends on the thermal stratification, decreases with the increase of water level, and increases with the increase of discharge flow; secondly, the effect of a temperature-control curtain on improving the outflow temperature is directly related to the thermal stratification in different months, and the improvement effect is better in spring and summer; finally, the improvement effect increases with the decrease of flow height above the temperature-control curtain, increases with the increase of water level, and decreases with the increase of discharge flow.

Funder

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3