Research on Chlorophyll-a Concentration Retrieval Based on BP Neural Network Model—Case Study of Dianshan Lake, China

Author:

Zhu Wei-Dong,Qian Chu-Yi,He Nai-Ying,Kong Yu-Xiang,Zou Zi-Ya,Li Yu-Wei

Abstract

The Chlorophyll-a (Chl-a) concentration is an important indicator of water environmental conditions; thus, the simultaneous monitoring of large-area water bodies can be realized through the remote sensing-based retrieval of the Chl-a concentrations. The back propagation (BP) neural network learning method has been widely used for the remote sensing retrieval of water quality in first and second-class water bodies. However, many Chl-a concentration measurements must be used as learning samples with this method, which is constrained by the number of samples, due to the limited time and resources available for simultaneous measurements. In this paper, we conduct correlation analysis between the Chl-a concentration data measured at Dianshan Lake in 2020 and 2021 and synchronized Landat-8 data. Through analysis and study of the radiative transfer model and the retrieval method, a BP neural network retrieval model based on multi-phase Chl-a concentration data is proposed, which allows for the realization of remote sensing-based Chl-a monitoring in third-class water bodies. An analysis of spatiotemporal distribution characteristics was performed, and the method was compared with other constructed models. The research results indicate that the retrieval performance of the proposed BP neural network model is better than that of models constructed using multiple regression analysis and curve estimation analysis approaches, with a coefficient of determination of 0.86 and an average relative error of 19.48%. The spatial and temporal Chl-a distribution over Dianshan Lake was uneven, with high concentrations close to human production and low concentrations in the open areas of the lake. During the period from 2020 to 2021, the Chl-a concentration showed a significant upward trend. These research findings provide reference for monitoring the water environment in Dianshan Lake.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

1. Evaluation on distribution of chlorophyll-a content in surface water of Taihu Lake by hyperspectral inversion models;Song;Acta Sci. Circumstantiae,2017

2. Remote Sensing Estimation of Chlorophyll-a and Total Suspended Matter Concentration in Qiantang River Based on GF-1/WFV Data;Cheng;J. Yangtze River Sci. Res. Inst.,2019

3. Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence

4. Changing characteristics and driving factors of trophic state of lakes in the middle and lower reaches of Yangtze River in the past 30 year;Zhu;J. Lake Sci.,2019

5. Study on Eutrophication Process and Water Ecological Effect of Dianshan Lake;Kang;Environ. Sci. Manag.,2020

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3