Chlorophyll-a Estimation in 149 Tropical Semi-Arid Reservoirs Using Remote Sensing Data and Six Machine Learning Methods

Author:

Oliveira Santos Victor1,Guimarães Bruna Monallize Duarte Moura2ORCID,Neto Iran Eduardo Lima2ORCID,de Souza Filho Francisco de Assis2,Costa Rocha Paulo Alexandre3ORCID,Thé Jesse Van Griensven4,Gharabaghi Bahram1ORCID

Affiliation:

1. School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada

2. Department of Hydraulic and Environmental Engineering, Technology Center, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil

3. Department of Mechanical Engineering, Technology Center, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil

4. Lakes Environmental, 170 Columbia St. W, Waterloo, ON N2L 3L3, Canada

Abstract

It is crucial to monitor algal blooms in freshwater reservoirs through an examination of chlorophyll-a (Chla) concentrations, as they indicate the trophic condition of these waterbodies. Traditional monitoring methods, however, are expensive and time-consuming. Addressing this hindrance, we conducted a comprehensive investigation using several machine learning models for Chla modeling. To this end, we used in situ collected water sample data and remote sensing data from the Sentinel-2 satellite, including spectral bands and indices, for large-scale coverage. This approach allowed us to conduct a comprehensive analysis and characterization of the Chla concentrations across 149 freshwater reservoirs in Ceará, a semi-arid region of Brazil. The implemented machine learning models included k-nearest neighbors, random forest, extreme gradient boosting, the least absolute shrinkage, and the group method of data handling (GMDH); in particular, the GMDH approach has not been previously explored in this context. The forward stepwise approach was used to determine the best subset of input parameters. Using a 70/30 split for the training and testing datasets, the best-performing model was the GMDH model, achieving an R2 of 0.91, an MAPE of 102.34%, and an RMSE of 20.4 μg/L, which were values consistent with the ones found in the literature. Nevertheless, the predicted Chla concentration values were most sensitive to the red, green, and near-infrared bands.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance

Lakes Environmental Software Inc.

Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3