Investigation of the Influence of Electrode Surface Structures on Wettability after Electrolyte Filling Based on Experiments and a Lattice Boltzmann Simulation

Author:

Wanner Johannes1,Birke Kai Peter12ORCID

Affiliation:

1. Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstr. 12, 70569 Stuttgart, Germany

2. Institute for Photovoltaics, Department of Electrical Energy Storage Systems, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract

The filling of the electrolyte and the subsequent wetting of the electrodes is a quality-critical and time-intensive process in manufacturing of lithium-ion batteries. The exact influencing factors are the subject of research through experiments and simulation tools. Previous studies have demonstrated that wetting occurs mainly in the transition between the materials but leads to gas entrapments. Therefore, this paper investigates the influence of the electrode surface structures, situated between anode and separator, on the wetting progress, through experimental capillary wetting and simulated with a lattice Boltzmann simulation. The results show that the simulations can identify the exact pore size distribution and determine the wetting rates of the entire materials. Furthermore, the experiments reveal a negative correlation between fast wetting and rougher surface properties. This enables a more precise determination of the wetting phenomena in lithium-ion cell manufacturing.

Funder

the Federal Ministry of Education and Research

the Federal Ministry of Education and Research, Germany

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3