Design, Properties, and Manufacturing of Cylindrical Li-Ion Battery Cells—A Generic Overview

Author:

Baazouzi Sabri1ORCID,Feistel Niklas1,Wanner Johannes1,Landwehr Inga1,Fill Alexander2ORCID,Birke Kai Peter12ORCID

Affiliation:

1. Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobel Str. 12, 70569 Stuttgart, Germany

2. Chair for Electrical Energy Storage Systems, Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract

Battery cells are the main components of a battery system for electric vehicle batteries. Depending on the manufacturer, three different cell formats are used in the automotive sector (pouch, prismatic, and cylindrical). In the last 3 years, cylindrical cells have gained strong relevance and popularity among automotive manufacturers, mainly driven by innovative cell designs, such as the Tesla tabless design. This paper investigates 19 Li-ion cylindrical battery cells from four cell manufacturers in four formats (18650, 20700, 21700, and 4680). We aim to systematically capture the design features, such as tab design and quality parameters, such as manufacturing tolerances and generically describe cylindrical cells. We identified the basic designs and assigned example cells to them. In addition, we show a comprehensive definition of a tabless design considering the current and heat transport paths. Our findings show that the Tesla 4680 design is quasi-tabless. In addition, we found that 25% of the cathode and 30% of the anode are not notched, resulting in long electrical and thermal transport paths. Based on CT and post-mortem analyses, we show that jelly rolls can be approximated very well with the Archimedean spiral. Furthermore, we compare the gravimetric and volumetric energy density, the impedance, and the heating behavior at the surface and in the center of the jelly rolls. From the generic description, we present and discuss production processes focusing on format and design flexible manufacturing of jelly rolls.

Funder

Federal Ministry of Education and Research

Ministry of Economic Affairs, Labour and Tourism in Baden-Württemberg

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3