A Surrogate Model of the Butler-Volmer Equation for the Prediction of Thermodynamic Losses of Solid Oxide Fuel Cell Electrode

Author:

Buchaniec Szymon1ORCID,Gnatowski Marek1,Hasegawa Hiroshi2,Brus Grzegorz1ORCID

Affiliation:

1. Department of Fundamental Research in Energy Engineering, AGH University of Krakow, 30-059 Krakow, Poland

2. Department of Machinery and Control Systems, Shibaura Institute of Technology, Tokyo 135-8548, Japan

Abstract

Solid oxide fuel cells are becoming increasingly important in various applications, from households to large-scale power plants. However, these electrochemical energy conversion devices have complex behavior that is difficult to understand and optimize. A numerical simulation is a primary tool for analysis and optimization-design. One of the most significant challenges in this field is improving microscale transport phenomena and electrode reaction models. Two main categories of simulation are black-box and white-box models. The former requires large experimental datasets and lacks physical constraints, while the latter inherits the inaccuracy of typical electrochemical reaction models. Here we show a micro-scale artificial neural network-supported numerical simulation that allows for overcoming those issues. In our research, we substituted one equation in the system, an electrochemical model, with an artificial neural network prediction. The data-driven prediction is constrained and must satisfy all reminded balance equations in the system. The results show that the proposed model can simulate an anode-electrode’s thermodynamic losses with improved accuracy compared with the classical approach. The coefficient of determination R2 for the proposed model was equal to 0.8810 for 800 °C, 0.8720 for 900 °C, and 0.8436 for 1000 °C. The findings open a way for improving the accuracy and computational complexity of electrochemical models in solid oxide fuel cell simulations.

Funder

Polish National Agency for Academic Exchange

program “Excellence Initiative—Research University”

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3