A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency

Author:

Wu Yaping1,Wu Xiaolong234ORCID,Xu Yuanwu5,Cheng Yongjun6,Li Xi23

Affiliation:

1. College of Liberal Arts, Jiangxi Science and Technology Normal University, Nanchang 330000, China

2. Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3. Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518055, China

4. School of Information Engineering, Nanchang University, Nanchang 330031, China

5. School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

6. Wuhan Maritime Communication Research Institute, Wuhan 430205, China

Abstract

Efficiency prediction plays a crucial role in the ongoing development of electrochemical energy technology. Our industries heavily depend on a reliable energy supply for power and electricity, and solid oxide fuel cell (SOFC) systems stand out as renewable devices with immense potential. SOFCs, as one of the various types of fuel cells, are renowned for their capability of combined heat and power generation. They can achieve an efficiency of up to 90% in operation. Furthermore, due to the fact that water is the byproduct of their electricity generation process, they are extremely environmentally friendly, contributing significantly to humanity’s sustainable development. With the advancement of renewable energy technologies and the increasing emphasis on sustainable development requirements, predicting and optimizing the efficiency of SOFC systems is gaining importance. This study leverages data collected from an SOFC system and applies an improved neural network structure, specifically the dendritic network (DN) architecture, to forecast thermoelectric efficiency. The key advantage of this method lies in the adaptive neural network algorithm based on the dendritic network structure without manually setting hidden nodes. Moreover, the predicted model of thermoelectric efficiency is validated using 682 and 1099 h of operational data from the SOFC system, and the results are compared against a conventional machine learning method. After comparison, it is found that when the novel method with adaptive characteristics proposed was used for SOFC system efficiency prediction, the MAE and RMSE values were both lower than 0.014; the result is significantly better than from other traditional methods. Additionally, this study demonstrated its effectiveness in predicting the thermoelectric efficiency of SOFC systems through secondary experiments. This study offers guidance on enhancing SOFC systems thermoelectric efficiency. Therefore, this study provides a foundation for the future industrialization of fuel cell systems.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3