A Formal Representation for Intelligent Decision-Making in Games

Author:

Liu Chanjuan1,Zhang Ruining1,Zhang Yu2,Zhu Enqiang2ORCID

Affiliation:

1. School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China

2. Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

Abstract

The study of intelligent game-playing has gained tremendous attention in the past few decades. The recent development of artificial intelligence (AI) players (e.g., the Go player AlphaGo) has made intelligent game-playing even more prominent in both academia and industry. The performance of state-of-the-art AI players benefits greatly from machine learning techniques, based on which, players can make estimations and decisions even without understanding the games. Although AI machines show great superiority over humans in terms of data processing and complex computation, there remains a vast distance between artificial intelligence and human intelligence with respect to the abilities of context understanding and reasoning. In this paper, we explore the theoretical foundation of intelligent game-playing from a logical perspective. The proposed logic, by considering the computational limits in practical game-playing, drops the ideal assumptions in existing logics for the classical game model. We show that under logical framework, the basis of decision-making for agents in game scenarios can be formally represented and analyzed. Moreover, by characterizing the solutions of games, this logic is able to formalize players’ rational decision-making during practical game-playing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province of China

Joint project of Guangzhou Municipal and Guangzhou University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3