Model Compression Algorithm via Reinforcement Learning and Knowledge Distillation

Author:

Liu Botao1,Hu Bing-Bing1,Zhao Ming1ORCID,Peng Sheng-Lung2ORCID,Chang Jou-Ming3ORCID

Affiliation:

1. School of Computer Science, Yangtze University, Jingzhou 434025, China

2. Department of Creative Technologies and Product Design, National Taipei University of Business, Taipei 10051, Taiwan

3. Institute of Information and Decision Sciences, National Taipei University of Business, Taipei 10051, Taiwan

Abstract

Traditional model compression techniques are dependent on handcrafted features and require domain experts, with a tradeoff between model size, speed, and accuracy. This study proposes a new approach toward resolving model compression problems. Our approach combines reinforcement-learning-based automated pruning and knowledge distillation to improve the pruning of unimportant network layers and the efficiency of the compression process. We introduce a new state quantity that controls the size of the reward and an attention mechanism that reinforces useful features and attenuates useless features to enhance the effects of other features. The experimental results show that the proposed model is superior to other advanced pruning methods in terms of the computation time and accuracy on CIFAR-100 and ImageNet dataset, where the accuracy is approximately 3% higher than that of similar methods with shorter computation times.

Funder

New Generation Information Technology Innovation Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3