Smooth Autonomous Patrolling for a Differential-Drive Mobile Robot in Dynamic Environments

Author:

Šelek Ana1ORCID,Seder Marija1ORCID,Petrović Ivan1ORCID

Affiliation:

1. Laboratory for Autonomous Systems and Mobile Robotics (LAMOR), Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Today, mobile robots have a wide range of real-world applications where they can replace or assist humans in many tasks, such as search and rescue, surveillance, patrolling, inspection, environmental monitoring, etc. These tasks usually require a robot to navigate through a dynamic environment with smooth, efficient, and safe motion. In this paper, we propose an online smooth-motion-planning method that generates a smooth, collision-free patrolling trajectory based on clothoid curves. Moreover, the proposed method combines global and local planning methods, which are suitable for changing large environments and enabling efficient path replanning with an arbitrary robot orientation. We propose a method for planning a smoothed path based on the golden ratio wherein a robot’s orientation is aligned with a new path that avoids unknown obstacles. The simulation results show that the proposed algorithm reduces the patrolling execution time, path length, and deviation of the tracked trajectory from the patrolling route compared to the original patrolling method without smoothing. Furthermore, the proposed algorithm is suitable for real-time operation due to its computational simplicity, and its performance was validated through the results of an experiment employing a differential-drive mobile robot.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3