Parallelized Particle Swarm Optimization on FPGA for Realtime Ballistic Target Tracking

Author:

Park Juhyeon1,Lee Heoncheol2ORCID,Kwon Hyuck-Hoon3,Hwang Yeji3,Choi Wonseok3

Affiliation:

1. School of Electronic Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

2. Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

3. PGM R&D Lab, LIGNEX1, Seongnam 13488, Republic of Korea

Abstract

This paper addresses the problem of tracking a high-speed ballistic target in real time. Particle swarm optimization (PSO) can be a solution to overcome the motion of the ballistic target and the nonlinearity of the measurement model. However, in general, particle swarm optimization requires a great deal of computation time, so it is difficult to apply to realtime systems. In this paper, we propose a parallelized particle swarm optimization technique using field-programmable gate array (FPGA) to be accelerated for realtime ballistic target tracking. The realtime performance of the proposed method has been tested and analyzed on a well-known heterogeneous processing system with a field-programmable gate array. The proposed parallelized particle swarm optimization was successfully conducted on the heterogeneous processing system and produced similar tracking results. Also, compared to conventional particle swarm optimization, which is based on the only central processing unit, the computation time is significantly reduced by up to 3.89×.

Funder

Defense Acquisition Program Administration

Grand Information Technology Research Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallelized PSO-based Particle Filters with GPU for Efficient Dynamic Object Localization;The Journal of Korean Institute of Information Technology;2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3