Ion Implantation into Nonconventional GaN Structures

Author:

Lorenz KatharinaORCID

Abstract

Despite more than two decades of intensive research, ion implantation in group III nitrides is still not established as a routine technique for doping and device processing. The main challenges to overcome are the complex defect accumulation processes, as well as the high post-implant annealing temperatures necessary for efficient dopant activation. This review summarises the contents of a plenary talk, given at the Applied Nuclear Physics Conference, Prague, 2021, and focuses on recent results, obtained at Instituto Superior Técnico (Lisbon, Portugal), on ion implantation into non-conventional GaN structures, such as non-polar thin films and nanowires. Interestingly, the damage accumulation is strongly influenced by the surface orientation of the samples, as well as their dimensionality. In particular, basal stacking faults are the dominant implantation defects in c-plane GaN films, while dislocation loops predominate in a-plane samples. Ion implantation into GaN nanowires, on the other hand, causes a much smaller density of extended defects compared to thin films. Finally, recent breakthroughs concerning dopant activation are briefly reviewed, focussing on optical doping with europium and electrical doping with magnesium.

Funder

European Commission

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extracting defect profiles in ion-implanted GaN from ion channeling;Materials Science in Semiconductor Processing;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3