Improved Face Detection Method via Learning Small Faces on Hard Images Based on a Deep Learning Approach

Author:

Mamieva Dilnoza,Abdusalomov Akmalbek BobomirzaevichORCID,Mukhiddinov MukhriddinORCID,Whangbo Taeg Keun

Abstract

Most facial recognition and face analysis systems start with facial detection. Early techniques, such as Haar cascades and histograms of directed gradients, mainly rely on features that had been manually developed from particular images. However, these techniques are unable to correctly synthesize images taken in untamed situations. However, deep learning’s quick development in computer vision has also sped up the development of a number of deep learning-based face detection frameworks, many of which have significantly improved accuracy in recent years. When detecting faces in face detection software, the difficulty of detecting small, scale, position, occlusion, blurring, and partially occluded faces in uncontrolled conditions is one of the problems of face identification that has been explored for many years but has not yet been entirely resolved. In this paper, we propose Retina net baseline, a single-stage face detector, to handle the challenging face detection problem. We made network improvements that boosted detection speed and accuracy. In Experiments, we used two popular datasets, such as WIDER FACE and FDDB. Specifically, on the WIDER FACE benchmark, our proposed method achieves AP of 41.0 at speed of 11.8 FPS with a single-scale inference strategy and AP of 44.2 with multi-scale inference strategy, which are results among one-stage detectors. Then, we trained our model during the implementation using the PyTorch framework, which provided an accuracy of 95.6% for the faces, which are successfully detected. Visible experimental results show that our proposed model outperforms seamless detection and recognition results achieved using performance evaluation matrices.

Funder

MSIT (Ministry of Science and ICT), Korea

Gachon University research fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3