Optimization of Low Salinity Water/Surfactant Flooding Design for Oil-Wet Carbonate Reservoirs by Introducing a Negative Salinity Gradient

Author:

Shakeel Mariam,Samanova AidaORCID,Pourafshary PeymanORCID,Hashmet Muhammad RehanORCID

Abstract

Engineered water surfactant flooding (EWSF) is a novel EOR technique to reduce residual oil saturation; however, it becomes quite challenging to obtain Winsor Type III microemulsion and the lowest IFT under actual reservoir conditions if only low salinity water is used. The main objective of this study was to design a negative salinity gradient to optimize the performance of the hybrid method. Three corefloods were performed on carbonate outcrop samples. The injection sequence in the first test was conventional waterflooding followed by optimum engineered water injection (2900 ppm) and finally an EWSF stage. The second and third tests were conducted using a varying negative salinity gradient. Engineered water for this study was designed by 10 times dilution of Caspian Sea water and spiking with key active ions. A higher salinity gradient was used for the first negative salinity gradient test. A total of 4300 ppm brine with 1 wt% surfactant was injected as a pre-flush after waterflooding followed by a further reduced salinity brine (~1400 ppm). The second negative salinity gradient test consisted of three post-waterflooding injection stages with salinities of 4600, 3700, and 290 ppm, respectively. Up to 8% and 16% more incremental oil recovery after waterflooding was obtained in the second and third tests, respectively, as compared to the first test. The descending order of brine salinity helped to create an optimum salinity environment for the surfactant despite surfactant adsorption. This study provided an optimum design for a successful LSSF test by adjusting the brine salinity and creating a negative salinity gradient during surfactant flooding. A higher reduction in residual oil saturation can be achieved by carefully designing an LSSF test, improving project economics.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3