A New Streamwise Scaling for Wind Turbine Wake Modeling in the Atmospheric Boundary Layer

Author:

Vahidi DaraORCID,Porté-Agel FernandoORCID

Abstract

In this study, we aim to investigate if there is a scaling of the streamwise distance from a wind turbine that leads to a collapse of the mean wake velocity deficit under different ambient turbulence levels. For this purpose, we perform large-eddy simulations of the wake of a wind turbine under neutral atmospheric conditions with various turbulence levels. Based on the observation that a higher atmospheric turbulence level leads to faster wake recovery and shorter near-wake length, we propose the use of the near-wake length as an appropriate normalization length scale. By normalizing the streamwise distance by the near-wake length, we obtain a collapse of the normalized wake velocity deficit profiles for different turbulence levels. We then explore the possibility of using the relationship obtained for the normalized maximum wake velocity deficit as a function of the normalized streamwise distance in the context of analytical wake modeling. Specifically, we investigate two approaches: (a) using the new relationship as a stand-alone model to calculate the maximum wake velocity deficit, and (b) using the new relationship to calculate the wake advection velocity within a physics-based wake expansion model. Large-eddy simulation of the wake of a wind turbine under neutral atmospheric conditions is used to evaluate the performance of both approaches. Overall, we observe good agreement between the simulation data and the model predictions, along with considerable savings in terms of the models’ computational costs.

Funder

Swiss Federal Office of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. Wind-turbine and wind-farm flows: A review;Bastankhah;Bound.-Layer Meteorol.,2020

2. Jensen, N. (1983). A Note on Wind Turbine Interaction, Risoe National Laboratory. Riso-M-2411.

3. Analytical modelling of wind speed deficit in large offshore wind farms;Frandsen;Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol.,2006

4. A new analytical model for wind-turbine wakes;Bastankhah;Renew. Energy,2014

5. Brugger, P., Fuertes, F.C., Vahidzadeh, M., Markfort, C.D., and Porté-Agel, F. (2019). Characterization of Wind Turbine Wakes with Nacelle-Mounted Doppler LiDARs and Model Validation in the Presence of Wind Veer. Remote Sens., 11.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3