Very Short-Term Forecast: Different Classification Methods of the Whole Sky Camera Images for Sudden PV Power Variations Detection

Author:

Niccolai AlessandroORCID,Ogliari EmanueleORCID,Nespoli AlfredoORCID,Zich RiccardoORCID,Vanetti Valentina

Abstract

Solar radiation is by nature intermittent and influenced by many factors such as latitude, season and atmospheric conditions. As a consequence, the growing penetration of Photovoltaic (PV) systems into the electricity network implies significant problems of stability, reliability and scheduling of power grid operation. Concerning the very short-term PV power production, the power fluctuations are primarily related to the interaction between solar irradiance and cloud cover. In small-scale systems such as microgrids, the adoption of a forecasting tool is a brilliant solution to minimize PV power curtailment and limit the installed energy storage capacity. In the present work, two different nowcasting methods are applied to classify the solar attenuation due to clouds presence on five different forecast horizons, from 1 to 5 min: a Pattern Recognition Neural Network and a Random Forest model. The proposed methods are tested and compared on a real case study: available data consists of historical irradiance measurements and infrared sky images collected in a real PV facility, the SolarTechLAB in Politecnico di Milano. The classification output is a range of values corresponding to the future value assumed by the Clear Sky Index (CSI), an indicator allowing to account for irradiance variations only related to clouds passage, neglecting diurnal and seasonal influences. The developed models present similar performance in all the considered time horizons, reliably detecting the CSI drops caused by incoming overcast and partially cloudy sky conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3