Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units

Author:

Su BinbinORCID,Smith ChristianORCID,Gutierrez Farewik ElenaORCID

Abstract

Gait phase recognition is of great importance in the development of assistance-as-needed robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control to determine and provide proper assistance to the wearer during gait, the user’s current gait phase must first be identified accurately. Gait phase recognition can potentially be achieved through input from wearable sensors. Deep convolutional neural networks (DCNN) is a machine learning approach that is widely used in image recognition. User kinematics, measured from inertial measurement unit (IMU) output, can be considered as an ‘image’ since it exhibits some local ‘spatial’ pattern when the sensor data is arranged in sequence. We propose a specialized DCNN to distinguish five phases in a gait cycle, based on IMU data and classified with foot switch information. The DCNN showed approximately 97% accuracy during an offline evaluation of gait phase recognition. Accuracy was highest in the swing phase and lowest in terminal stance.

Funder

Promobilia

Swedish Research Council

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3