The Impact of Data Filtration on the Accuracy of Multiple Time-Domain Forecasting for Photovoltaic Power Plants Generation

Author:

Eroshenko Stanislav A.ORCID,Khalyasmaa Alexandra I.ORCID,Snegirev Denis A.,Dubailova Valeria V.,Romanov Alexey M.ORCID,Butusov Denis N.ORCID

Abstract

The paper reports the forecasting model for multiple time-domain photovoltaic power plants, developed in response to the necessity of bad weather days’ accurate and robust power generation forecasting. We provide a brief description of the piloted short-term forecasting system and place under close scrutiny the main sources of photovoltaic power plants’ generation forecasting errors. The effectiveness of the empirical approach versus unsupervised learning was investigated in application to source data filtration in order to improve the power generation forecasting accuracy for unstable weather conditions. The k-nearest neighbors’ methodology was justified to be optimal for initial data filtration, based on the clusterization results, associated with peculiar weather and seasonal conditions. The photovoltaic power plants’ forecasting accuracy improvement was further investigated for a one hour-ahead time-domain. It was proved that operational forecasting could be implemented based on the results of short-term day-ahead forecast mismatches predictions, which form the basis for multiple time-domain integrated forecasting tools. After a comparison of multiple time series forecasting approaches, operational forecasting was realized based on the second-order autoregression function and applied to short-term forecasting errors with the resulting accuracy of 87%. In the concluding part of the article the authors from the points of view of computational efficiency and scalability proposed the hardware system composition.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3