Bone Chemical Composition Assessment with Multi-Wavelength Photoacoustic Analysis

Author:

Feng TingORCID,Zhu Yunhao,Kozloff Kenneth M.,Khoury Basma,Xie Yejing,Wang Xueding,Cao Meng,Yuan JieORCID,Ta Dean,Cheng QianORCID

Abstract

In this study, the feasibility of assessing the chemical composition in bone using the multi-wavelength photoacoustic analysis (MWPA) method was investigated. By illuminating a bone specimen using laser light with a wavelength tunable over an optical spectrum from 680 nm to 950 nm, the optical absorption spectrum of the bone was acquired. Then, with the optical absorption spectra of all the optically absorbing chemical components in the bone known, a spectral unmixing procedure was performed to quantitatively assess the relative content of each chemical component. The experimental results from porcine rib bones demonstrated that the contents of the chemical components, including not only non-organic materials such as minerals and water but also organic materials including oxygenated hemoglobin, deoxygenated hemoglobin, lipid, and collagen, can all be assessed by MWPA. As the chemical composition in the bone is directly associated with functional and metabolic activities, the finding from this study suggests that the MWPA method could offer a new diagnostic tool for the non-invasive evaluation of bone health.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Pocket Reference to Osteoporosis;Kanis,2019

2. Multidisciplinary Approach to Osteoporosis;Marcocci,2018

3. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements

4. Bone Quantitative Ultrasound;Laugier,2011

5. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3