Development of a semi‐anthropomorphic photoacoustic calcaneus phantom based on nano computed tomography and stereolithography 3D printing

Author:

Xu Zhanpeng1ORCID,Locke Conor S.2,Morris Richard3,Jamison DeAndre1,Kozloff Kenneth M.12,Wang Xueding14

Affiliation:

1. Department of Biomedical Engineering University of Michigan Ann Arbor Michigan USA

2. Department of Orthopaedic Surgery University of Michigan Ann Arbor Michigan USA

3. IF, LLC Stoughton Wisconsin USA

4. Department of Radiology University of Michigan Ann Arbor Michigan USA

Abstract

AbstractOsteoporosis is a major public health threat with significant physical, psychosocial, and financial consequences. The calcaneus bone has been used as a measurement site for risk prediction of osteoporosis by noninvasive quantitative ultrasound (QUS). By adding optical contrast to QUS, our previous studies indicate that a combination of photoacoustic (PA) and QUS, that is, PAQUS, provides a novel opportunity to assess the health of human calcaneus. Calibration of the PAQUS system is crucial to realize quantitative and repeatable measurements of the calcaneus. Therefore, a phantom which simulates the optical, ultrasound, and architectural properties of the human calcaneus, for PAQUS system calibration, is required. Additionally, a controllable phantom offers researchers a versatile framework for developing versatile structures, allowing more controlled assessment of how varying bone structures cause defined alterations in PA and QUS signals. In this work, we present the first semi‐anthropomorphic calcaneus phantom for PAQUS. The phantom was developed based on nano computed‐tomography (nano‐CT) and stereolithography 3D printing, aiming to maximize accuracy in the approximation of both trabecular and cortical bone microstructures. Compared with the original digital input calcaneus model from a human cadaveric donor, the printed model achieved accuracies of 71.15% in total structure and 87.21% in bone volume fraction. Inorganic materials including synthetic blood, mineral oil, intralipid, and agar gel were used to model the substitutes of bone marrow and soft tissue, filling and covering the calcaneus phantom. The ultrasound and optical properties of this phantom were measured, and the results were consistent with those measured by a commercialized device and from previous in vivo studies. In addition, a short‐term stability test was conducted for this phantom, demonstrating that the optical and ultrasound properties of the phantom were stable without significant variation over 1 month. This semi‐anthropomorphic calcaneus phantom shows structural, ultrasound, and optical properties similar to those from a human calcaneus in vivo and, thereby, can serve as an effective source for equipment calibration and the comprehensive study of human patients.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3