Orchard Floor Management Affects Tree Functionality, Productivity and Water Consumption of a Late Ripening Peach Orchard under Semi-Arid Conditions

Author:

Losciale PasqualeORCID,Gaeta LilianaORCID,Manfrini Luigi,Tarricone Luigi,Campi PasqualeORCID

Abstract

Semi-arid conditions are favorable for the cultivation of late ripening peach cultivars; however, seasonal water scarcity and reduction in soil biological fertility, heightened by improper soil management, are jeopardizing this important sector. In the present two-year study, four soil managements were compared on a late ripening peach orchard: (i) completely tilled (control); (ii) mulched with reusable reflective plastic film; (iii) mulching with a Leguminosae cover-crop flattened after peach fruit set; (iv) completely tilled, supplying the water volumes of the plastic mulched treatment, supposed to be lower than the control. Comparison was performed for soil features, water use, tree functionality, fruit growth, fruit quality, yield and water productivity. Even receiving about 50% of the regular irrigation, reusable reflective mulching reduced water loss and soil carbon over mineralization, not affecting (sometimes increasing) net carbon assimilation, yield, and fruit size and increasing water productivity. The flattening technique should be refined in the last part of the season as in hot and dry areas with clay soils and low organic matter, soil cracking increased water evaporation predisposing the orchard at water stress. The development and implementation of appropriate soil management strategies could be pivotal for making peach production economically and environmentally sustainable.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3