Determination of the Most Effective Wavelengths for Prediction of Fuji Apple Starch and Total Soluble Solids Properties

Author:

Pourdarbani Razieh,Sabzi SajadORCID,Jarolmasjed Sanaz,Panagopoulos ThomasORCID

Abstract

Proper physical properties and standard chemical properties are among the criteria that consumers use to select fruits. Recently, researchers attempted to develop non-destructive methods for measuring properties, among which the near-infrared (NIR) spectroscopy is of great use. Fuji apples were collected in three different growth stages, and then starch and soluble solids were extracted. Spectral data in the range of 800 to 900 nm were used to predict the amount of starch content and 920 to 980 nm to estimate total soluble solids (TSS). Reflectance spectra were pre-processed and the most effective wavelengths of each property were selected using hybrid artificial neural network-simulated annealing (ANN-SA). Non-destructive estimation of physicochemical properties was conducted using spectral data of the most effective wavelengths using a hybrid artificial neural network-biogeography-based optimization algorithm (ANN-BBO). The results indicated that the regression coefficient of the best state of training for predicting starch was 0.97 and of TSS was 0.96, while R2 was 0.92 for both. The most effective wavelengths were 852.58, 855.54, 849.03, 855.83, 853.47, 844.90 nm for starch and 967.86, 966.67, 964.90, 958.40, 957.22, 963.97 nm for TSS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3