Safety Operation of n-DOF Serial Hydraulic Manipulator in Constrained Motion with Consideration of Contact-Loss Fault

Author:

Truong Hoai Vu AnhORCID,Trinh Hoai AnORCID,Ahn Kyoung KwanORCID

Abstract

In consideration of accidental contact-loss due to step-change or accidentally moving out of a constrained framework, this paper focuses on solving this problem during working processes of an n-degree-of-freedom hydraulic manipulator (n-DOF manipulator). In order to overcome this phenomenon, a fault detection methodology-based virtual energy tank is employed with a shaping function to prevent the end-effector from damage or unexpected motion. This technique helps to detect when the contact-loss happens by a virtual energy variable; thus, decoupling a force control regulation. Moreover, a new trajectory for smooth motion after contact-loss detection is also discussed to increase system robustness. Additionally, to enhance tracking performance, adaptive laws are designed to compensate for system uncertainties. Comparative simulations are given on the n-DOF hydraulic manipulator to evaluate effectiveness of the impedance-based energy tank methodology under the sudden step-changed environment. Moreover, influences of control gains and setup energy parameters to the system behaviors when contact-loss happens are remarkably discussed as indispensable criteria for further development. The simulated results certified the superior effectiveness and reliability of the suggested methodology over the conventional impedance control for safe operation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3