Abstract
Analysis of pollen material obtained from the Hirst-type apparatus, which is a tedious and labor-intensive process, is usually performed by hand under a microscope by specialists in palynology. This research evaluated the automatic analysis of pollen material performed based on digital microscopic photos. A deep neural network called YOLO was used to analyze microscopic images containing the reference grains of three taxa typical of Central and Eastern Europe. YOLO networks perform recognition and detection; hence, there is no need to segment the image before classification. The obtained results were compared to other deep learning object detection methods, i.e., Faster R-CNN and RetinaNet. YOLO outperformed the other methods, as it gave the mean average precision (mAP@.5:.95) between 86.8% and 92.4% for the test sets included in the study. Among the difficulties related to the correct classification of the research material, the following should be noted: significant similarities of the grains of the analyzed taxa, the possibility of their simultaneous occurrence in one image, and mutual overlapping of objects.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference35 articles.
1. WAO White Book on Allergy;Pawankar;Milwaukee WI World Allergy Organ.,2011
2. AN AUTOMATIC VOLUMETRIC SPORE TRAP
3. Methods in Aerobiology,1998
4. Spanish Aerobiology Network (REA): Management and Quality Manual;Galán,2007
5. News
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献