Responses of Soil and Ammonia Nitrogen Loss Rates to Hydraulic Parameters under Different Slope Gradients and Rainfall Intensities

Author:

Yang Hao1,Wei Chenchen2,Sun Guanghui1,Tao Xueqing1,Wang Yitong1,Xing Weimin1

Affiliation:

1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China

Abstract

Soil erosion and the consequent loss of nutrients have consistently been significant factors contributing to land degradation and nonpoint source pollution. While runoff serves as the primary carrier for nutrient loss, the hydraulic processes governing the mechanisms of nutrient loss remain not entirely clear. This paper aims to investigate the impacts of rainfall intensity and the slope gradient on hydraulic parameters, soil loss rates, and ammonia nitrogen loss rates, with the objective of determining the optimal hydraulic parameters for more accurate predictions of soil erosion and nutrient loss rates. A series of simulated rainfall experiments with three rainfall intensities (25, 50, and 75 mm min−1) and four slope gradients (8.7%, 17.6%, 26.8%, and 36.4%) were conducted on a 5 m × 10 m slope. The results indicated that the flow velocity, shear stress, stream power, unit stream power, and unit energy all increased with the increase in slope gradient or rainfall intensity. The water depth decreased with an increase in the slope gradient but increased with an increase in the rainfall intensity. Laminar flow occurred in all experiments (Reynolds number < 500). Only the overland flow under a 25 mm h−1 rainfall intensity and 8.7% slope gradient was subcritical flow (Froude number < 1). Hydraulic parameters, the soil loss rate, and ammonia nitrogen loss rate could be all expressed as the product of rainfall intensity and slope power function, with R2 ranging from 0.949 to 0.997. The average soil loss rate and process soil erosion rate could both be fitted using the power function of hydraulic parameters, with the optimal fitting parameter being stream power (R2 = 0.980 and 0.909). The average ammonia nitrogen loss rate exhibited a linear relationship with the hydraulic parameters, and the optimal fitting parameter was also stream power (R2 = 0.933). However, there were relatively low correlations between hydrodynamic parameters and the ammonia nitrogen loss rate (R2 = 0.450–0587). Our results contribute to a deeper understanding of the hydraulic processes involved in nutrient loss.

Funder

Natural Science Foundation of Jiangsu Province, China

National Natural Science Foundation of China

Knowledge Innovation Program of Wuhan–Shuguang Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3