Effects of Frozen Layer on Composite Erosion of Snowmelt and Rainfall in the Typical Black Soil of Northeast China

Author:

Bai Qing12,Zhou Lili23,Fan Haoming23,Huang Donghao23,Yang Defeng23,Liu Hui12

Affiliation:

1. College of Forestry, Shenyang Agricultural University, Shenyang 110866, China

2. Key Laboratory of Soil Erosion Control and Ecological Restoration in Liaoning Province, Shenyang 110866, China

3. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China

Abstract

Composite erosion caused by snowmelt and rainfall causes considerable soil loss during spring thawing. However, research on the impact of frozen soil layers (FSL) on composite erosion is lacking. Therefore, indoor simulation experiments were conducted on soil conditions of 0 cm (unfrozen soil, FSLUN) and 3 cm thawing depths to explore the influence of FSL on composite erosion in the black soil region of Northeast China. Three snowmelt runoff (SR) discharges (0.34 L min−1, 0.5 L min−1, and 0.67 L min−1), three rainfall (RF) intensities (80 mm h−1, 120 mm h−1, and 160 mm h−1), and three snowmelt–rainfall interactions (SRI; 0.34 L min−1–80 mm h−1, 0.5 L min−1–120 mm h−1, and 0.67 L min−1–160 mm h−1) were used in this study. The results indicate that FSL advanced the initial erosion times of SR, RF, and SRI by 42.06%, 43.33%, and 45.83%, respectively. FSL increased the soil erosion rate (SER) of SRI by 1.2 (1.0–1.6) times that of unfrozen soil, which was smaller than that of SR (16.3, 5.6–25.0) and RF (1.7, 1.6–1.9), indicating that the interaction had an inhibitory effect on the increase in water erosion in the frozen layer. Under FSL and FSLUN conditions, RF erosion was 1.5–4.1 times and 14.5–24.3 times greater than SR erosion. The SRI erosion was not a simple linear superposition of multiple types of single-phase erosion; it had a significant nonlinear superposition amplification effect (SAE), with SAE of ~100% and ~300% under frozen and unfrozen soil conditions. Flow velocity (0.11 < R2 < 0.68), stream power (0.28 < R2 < 0.88), and energy consumption (0.21 < R2 < 0.87) exhibited significant (p < 0.05) linear relationships with SER in both FSL and FSLUN. The research results deepen our understanding of the composite erosion process during the spring thawing period in the black soil region of Northeast China and provide a basis for the prevention and control of soil erosion in the region.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3