Improving Production Efficiency with a Digital Twin Based on Anomaly Detection

Author:

Trauer JakobORCID,Pfingstl SimonORCID,Finsterer Markus,Zimmermann Markus

Abstract

Industry 4.0, cyber-physical systems, and digital twins are generating ever more data. This opens new opportunities for companies, as they can monitor development and production processes, improve their products, and offer additional services. However, companies are often overwhelmed by Big Data, as they cannot handle its volume, velocity, and variety. Additionally, they mostly do not follow a strategy in the collection and usage of data, which leads to unexploited business potentials. This paper presents the implementation of a Digital Twin module in an industrial case study, applying a concept for guiding companies on their way from data to value. A standardized use case template and a procedure model support the companies in (1) formulating a value proposition, (2) analyzing the current process, and (3) conceptualizing a target process. The presented use case entails an anomaly detection algorithm based on Gaussian processes to detect defective products in real-time for the extrusion process of aluminum profiles. The module was initially tested in a relevant environment; however, full implementation is still missing. Therefore, technology readiness level 6 (TRL6) was reached. Furthermore, the effect of the target process on production efficiency is evaluated, leading to significant cost reduction, energy savings, and quality improvements.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference47 articles.

1. A formal definition of Big Data based on its essential features

2. The World’s Data Explained: How Much We’re Producing and Where It’s All Storedhttps://www.weforum.org/agenda/2021/05/world-data-produced-stored-global-gb-tb-zb

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3