Spatial Pattern Simulation of Land Use Based on FLUS Model under Ecological Protection: A Case Study of Hengyang City

Author:

Zhang Chuchu,Wang Peng,Xiong Pingsheng,Li Chunhong,Quan Bin

Abstract

With rapid economic development in China, the excessive expansion of cities has led to the imbalance of land use structure, and then the ecological regulation function of the land ecosystem experiences problems, which has become an obstacle to sustainable development. Therefore, in order to protect the ecological environment, regulate urban development and pursue the maximization of ecological benefits, it is necessary to analyze, simulate and predict land use change. In this study, Hengyang City was taken as the study area, and based on the current land use data of Hengyang City in 2010, 2015, and 2018, the land use type transfer during 2010–2015 and 2015–2018 was analyzed. Then, starting from 2010, the FLUS model was used to simulate the spatial distribution of land use in 2015 and 2018, and then the spatial distribution of land use in Hengyang City in 2025 was predicted with the Markov prediction method under the premise of ecological protection priority. The results show that the change in ecological land in Hengyang City is mainly distributed in the surrounding and marginal areas, because the topography of Hengyang City is a basin. Changes in land type in Hengyang City in 2015 were subtle and difficult to observe. However, in 2018, the transformation of non-ecological land into ecological land was obvious, and the distribution area of ecological land expanded significantly. The Kappa index of the results simulated by the FLUS model based on neural network is above 0.72, and overall accuracy is above 0.9, which is highly consistent with the actual situation. It is reasonable and convincing to predict the spatial distribution of land use in the context of ecological protection. The predicted results can be useful for urban planning and land use distribution and provide a reference for relevant decision-makers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3