Effect of Land Use on the Benthic Diatom Community of the Danube River in the Region of Budapest

Author:

Trábert Zsuzsa,Duleba Mónika,Bíró Tibor,Dobosy Péter,Földi Angéla,Hidas AndrásORCID,Kiss Keve Tihamér,Óvári Mihály,Takács Anita,Várbíró GáborORCID,Záray Gyula,Ács Éva

Abstract

(1) Urbanization significantly influences the ecosystems of rivers in various ways, including the so-called loading effect of wastewater production. Benthic diatoms are used in ecological status assessments of waters. Beside species composition, traits can be used as indicators. We aimed to evaluate how the loading of the large city of Budapest manifests in the physico-chemical variables of the River Danube and what species composition and trait response this loading results in for the benthic diatom communities. (2) Weekly samplings were performed at points upstream and downstream of Budapest on both riverbanks. Samples were compared, based on general physical-chemical variables and the concentration of thirty-four elements, as well as species composition and seven traits of species of diatom communities. Ecological status was assessed using the Specific Pollution Sensitivity Index (IPS). (3) Only a few measured environmental variables showed differences between the sampling points, suggesting that the nutrient loading has significantly decreased due to the installation of several efficiently working wastewater treatment plants since the introduction of the European Union Water Framework Directive. In contrast, the species composition and traits of species showed the effect of land use. Benthic diatoms indicate the environmental changes caused by land use in the longer-term, while chemical measurements reflect instantaneous status.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3