The Impact of Climate Warming on Lake Surface Heat Exchange and Ice Phenology of Different Types of Lakes on the Tibetan Plateau

Author:

Lang Jiahe,Ma Yaoming,Li Zhaoguo,Su DongshengORCID

Abstract

Increasing air temperature is a significant feature of climate warming, and is cause for some concern, particularly on the Tibetan Plateau (TP). A lack of observations means that the impact of rising air temperatures on TP lakes has received little attention. Lake surfaces play a unique role in determining local and regional climate. This study analyzed the effect of increasing air temperature on lake surface temperature (LST), latent heat flux (LE), sensible heat flux (H), and ice phenology at Lake Nam Co and Lake Ngoring, which have mean depths of approximately 40 m and 25 m, respectively, and are in the central and eastern TP, respectively. The variables were simulated using an adjusted Fresh-water Lake (FLake) model (FLake_α_ice = 0.15). The simulated results were evaluated against in situ observations of LST, LE and H, and against LST data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for 2015 to 2016. The simulations show that when the air temperature increases, LST increases, and the rate of increase is greater in winter than in summer; annual LE increases; H and ice thickness decrease; ice freeze-up date is delayed; and the break-up date advances. The changes in the variables in response to the temperature increases are similar at the two lakes from August to December, but are significantly different from December to July.

Funder

Second Tibetan Plateau Scientific Expedition and Research program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference84 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3