Improvements and Evaluation of the FLake Model in Dagze Co, Central Tibetan Plateau

Author:

Cao Bilin12ORCID,Liu Minghua1,Su Dongsheng12ORCID,Wen Lijuan2ORCID,Li Maoshan1,Lin Zhiqiang1,Lang Jiahe3,Song Xingyu4

Affiliation:

1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China

2. Qinghai Lake Comprehensive Observation and Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. Qingdao Meteorological Bureau, Qingdao 266000, China

4. Lanzhou Central Meteorological Observatory, Lanzhou 730000, China

Abstract

FLake has been one of the most extensively used lake models in many studies for lake thermal structure simulations. However, due to the scarcity of lake temperature observations, its applicability and performance on lakes over the Tibetan Plateau are still poorly investigated, especially in small- to medium-sized lakes. In this study, based on water profile observations in Dagze Co, a medium-sized lake on the central Tibetan Plateau, the sensitivity of lake thermal features to three key parameters in FLake was investigated. The performance of FLake in reproducing the lake thermal features was evaluated and improved by optimizing these key parameters. The results showed that the FLake model with default parameter settings can generally reproduce the thermal features of Dagze Co, but there are still significant deviations compared to observation. The sensitive experiments demonstrated that the thermal structure of the lake obviously responds to the change in the water extinction coefficient (Kd), friction velocity (u*), and ice albedo (αice). Based on previous studies and sensitive experiments, the three key parameters were set to the optimized value, which substantially improved the performance of FLake. The values of bias and RMSE of simulated lake surface water temperature decreased from 3.08 °C and 3.62 °C to 2.0 °C and 2.48 °C after parameter optimization. The integration of a simple salinity scheme further improved the ability of FLake to reproduce the observed thermal features of Dagze Co. These results will improve our understanding of thermal processes in lakes on the Tibetan Plateau, as well as the applicability of lake models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

CAS “Light of West China” program

Scientific Research Foundation of Chengdu University of Information Technology

Science and technology Research and Development Program of China National Railway Group

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3