Abstract
The application of carbon composite briquette (CCB) is considered to be an efficient method for achieving low-energy and low-CO2-emission blast furnace (BF) operations. In this research, a combined experimental and numerical study was conducted on the CCB reaction behavior in BF. The CCB used in this study had a composition of 20.10 wt.% carbon, 29.70 wt.% magnetite, 39.70 wt.% wüstite, and 1.57 wt.% metallic iron. Using the prepared CCB samples, isotherm reduction tests under a simulated BF atmosphere (CO-CO2-N2) were conducted and a reaction model was developed. Subsequently, the reaction behavior of CCB along the mid-radial solid descending path in an actual BF of 2500 m3 was analyzed by numerical simulations based on the experimental findings and the previous results of comprehensive BF modeling. The results of the experiments showed that the CCB model predictions agreed well with the experimental measurements. With respect to the BF, the results of the numerical simulations indicated that, along the path, before the CCB temperature reached 1000 K, the CCB was reduced by CO in the BF gas; when its temperature was in the range from 1000 to 1130 K, it underwent self-reduction and contributed both CO and CO2 to the BF gas; when its temperature was above 1130 K, it only presented carbon gasification. Moreover, these results also revealed that the reduction of iron oxide and the gasification of carbon inside the CCB proceeded under an uneven mode. The uneven radial distribution of the local reduction fraction and local carbon conversion were evident in the self-reducing stage of the CCB.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献